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Abstract

The study focuses on automating ECG analysis,
a crucial tool for cardiac evaluation and treatment
decisions. Two classifiers were developed to detect cardiac
conduction disorders and myocardial infarctions from
12-lead ECGs. These classifiers were trained on three
open datasets after ECG preprocessing to remove noise
and select relevant features.

The first classifier (10 classes) identifies conditions of
the ventricular conduction system: normal ECG, LBBB,
ILBBB, premature ventricular complex, LAFB, LPFB,
IRBBB, RBBB, nonspecific intraventricular conduction
disturbance, and ventricular preexcitation. The second
classifier (5 classes) distinguishes between non-infarcted
ECGs and various types of myocardial infarction
locations.

For each QRS complex, we calculated statistical,
time-domain, frequency features, and scalograms. Then
we trained classifiers combining XGBoost for statistical
features, an autoencoder+neural network for deep-learning
features, and ResNet for scalograms. An ensemble
approach was employed to get the final class prediction.
We show that the developed ensemble model achieve
the mean F1-score of 0.70 and 0.76 for the first and
second classifier respectively. The study’s key strength lies
in its diverse feature extraction methods, enhancing the
predictive power of machine learning models.

1. Introduction

The recognition of abnormalities in the electrocardiograms
(ECGs) by computers is widely used by cardiologists to
categorize long-term ECG recordings. The combination
of Machine Learning (ML) models and ECGs has opened
up exciting possibilities for improving the accuracy and
efficiency of these diagnostics.

Various feature extraction techniques have been

employed in this context, including morphological features
[1], frequency-domain features [2], complex heartbeat
representations [3], wavelet-based features [4], and
statistical features [5].

These extracted features can then be classified using
a range of methodologies. The proposed techniques
encompass simple classifiers like linear discriminants (LD)
[6], nearest neighbor rules [7], and decision trees [8], as
well as more advanced approaches such as neural networks
[9], conditional random fields [10], and, more recently,
deep learning techniques [11].

The main difficulty in developing such models is that
multiple labels can be assigned to a single ECG recording.
Thus, the requirements for the training dataset, which
must contain a sufficient number of rare cardiac disease
combinations, are increased.

In this study, we proposed an ensemble of ML models
for the classification of ECG diseases. For this preliminary
study, we selected only QRS features to classify heart
ventricle diseases. We propose different ways to extract
ECG features and then use an ensemble of ML models to
finalize classification.

2. Methods

In this work, we built two ML classifiers to determine
the diagnosis from the ECG - a 10-class classifier and a
5-class classifier. The pipeline of this study is presented in
Figure 1.

For the 10-class classifier, we selected the following
labels: normal ECG, left bundle branch block (LBBB),
incomplete left bundle branch block (ILBBB), premature
ventricular complex (PVCs), left anterior fascicular
block (LAFB), left posterior fascicular block (LPFB),
incomplete right bundle branch block (IRBBB), right
bundle branch block (RBBB), non-specific intraventricular
conduction disturbance (NICD), and ventricular preexcitation
(VPE) (see Table 1). For the 5-class classifier, we selected
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the following labels: non-infarcted ECGs, anteroseptal
myocardial infarction (MI), lateral MI, inferior MI, and
anterior MI (see Table 2).

2.1. Initial data

To train and validate our classifiers, we used three
12-lead datasets: the dataset of Chapman University
[12], the PTB-XL dataset [13], and the dataset of
Shandong Provincial Hospital (SPH) [14]. The datasets
were collected from different clinics, each containing a
different number of labels and records. Moreover, there
is a significant imbalance in the data, which makes the
classification task challenging. In addition, only 12-lead
ECG recordings with a frequency of 100 out of 500 Hz
were used. The ECG recordings were divided by a ratio of
0.8 to 0.2 for training and validation data, respectively.

2.2. ECG preprocessing

At the initial stage, the ECG data has been filtered and
any unsuitable signals have been excluded. The signals
have been further processed to remove baseline wanders,
along with other types of noise. We used a moving average
filter to remove baseline wander and to remove other types
of noise, such as power line noise, muscle noise, and
respiration noise bandpass filter was used, with a range of
0.1 50 Hz.

Then, we estimated the boundaries of the QRS
complex in the patients’ ECG signals using the
Hamilton-Thompson algorithm [15]. To standardize the
inputs for the neural network, we cut off the signal with
the QRS complex within the boundaries.

2.3. Statistical features classification

For one of the ensemble ML models, we used statistical
features and the XGBoost model. A similar approach was
proposed in a recent article [5]. The mean and median
features were utilized to determine the central tendency
of the ECG signal. To capture the statistical dispersion
of the ECG features such as standard deviation, range,
and interquartile range were employed. The kurtosis
and skewness parameters are employed to determine the
degree of asymmetry and peakedness of the ECG signal
distribution. So, we extracted statistical features from
every lead signal and used a concatenated vector of
features to classify ECG using the XGBoost classifier.

Additionally, statistical features were used as an
additional step of ECG filtering. ECG signals with
statistical features beyond 3 sigma were excluded from
training and validation.

2.4. Wavelet features classification

To train the deep learning model, we used a
comprehensive approach that involved transforming
12-lead ECG signals into complex 3D representations.
This transformation was achieved by using the Continuous
Wavelet Transformation (CWT) technique, which uses a
Morlet mother wavelet as the basis. By applying the CWT,
we generated scalograms [16], which are essentially scaled
representations of the ECG signals. These scalograms
took the form of 3D images, incorporating both time and
frequency dimensions.

These 3D images were then used as the primary input
data for a Residual Neural Network (ResNet) [17]. In the
final stage of our model architecture, we implemented a
fully connected layer with the Sigmoid as an activation
function. Depending on the specific classification task, we
used either a linear layer with 10 outputs for a 10-class
classification problem or a linear layer with 5 outputs for
a 5-class classification problem. The ResNet was used to
solve the multi-label classification problem for ECGs.

2.5. Deep learning features classification

We used a convolutional variation autoencoder (CVAE)
to convert the ECG signal into a set of features (also called
latent space). The input to this neural network was a QRS
signal of dimension (i,300,12), where i is the number of
12-lead QRS signals to be processed. CVAE has three
system units: encoder, latent space unit, and decoder.
An encoder consists of several successive convolutional
blocks. Each block consists of a convolution layer, a batch
normalization layer, an activation layer and a maximum
pooling layer. The encoder block transforms a QRS
complex into k feature vectors, where k is the parameter
of the encoder. We used the same encoder unit for the
QRS signal of each lead with shared weights. At the output
of the encoder, the received features are concatenated
into a block of latent space, and the dimension is further
reduced by the linear transformation. One-dimensional
deconvolution blocks are used to decode the signal. Each
block consists of a convolutional transpose layer, a batch
normalization layer, and an activation layer.

The loss function for training this neural network is as
follows:

L =

12∑
n=1

||QRStrue−QRSpred||2+KL[N(µ, σ), N(0, 1)]

(1)
where QRStrue is the input QRS signal in one
on the 12 lead, QRSpred - decoded QRS signal,
KL - Kullback-Leibler divergence, N(µ, σ) - normal
distribution with parameters µ and σ given out from latent
space.
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Figure 1. Pipeline for the classification of ECGs.

For ECG classification we used trained CVAE on
described datasets and then used features from the latent
layer for the ECG classification task. For this, we
implement a neural network with several dense layers and
a sigmoid layer as an output layer. We used a binary
cross-entropy loss function to train this classifier.

2.6. Ensemble of ML models

In our work, we employed ensemble methods, which
merge different algorithms and architectures to generate
predictions by aggregating their outputs. To combine ML
model outputs we utilized the averaging approach, where
each model’s prediction is given equal weight in the final
decision-making process.

3. Results

The results of the ensemble of ML models for 10-class
and 5-class classification are shown in Table 1 and Table 2
respectively. For both classifiers, we obtained high values
for accuracy, but the considered dataset was imbalanced,
so we have focused further description for the F1 score,
sensitivity, and specificity. For the 10-class classifier,
we got a value of F1-score higher than 0.7 for Normal
ECG, LBBB, LAFB, IRBBB, and RBBB. In addition, we
obtained a fairly good ratio (≥ 0.8) of sensitivity and
specificity for Normal ECG, LBBB, LAFB, and RBBB.
We did not have a high sensitivity (0.72) for IRBBB.
This was because a proportion of true IRBBB cases were
classified as RBBB and normal ECG. For ILBBB, LBFB,
and VPE we obtained zero values for F1 and sensitivity,
again due to the imbalance of the dataset and the low
presence of these classes in the training and validation sets.
For PVCs, we got low values of F1-score and sensitivity.
This can be explained by the chaotic appearance of PVCs
on ECGs, while we used only one QRS complex by the
12-lead ECG in the classification. As a result, PVCs may
not have reached the selected QRS complex. We also got
low F1 scores and sensitivity values for the NICD pattern.

ECGs in cases with NICD can vary from patient to patient.
This may be due to the presence of fibrotic changes and
infarcts that affect the electrical excitation of the heart.
Thus, ECGs from patients with fibrosis and block not
related to LBBB and RBBB may be attributed to NICD,
complicating NICD classification.

For a 5-class classifier, we achieved a F1-score (≥ 0.7)
and a reasonably balanced sensitivity-to-specificity ratio
(≥ 0.8) for non-infarcted ECGs, anteroseptal MI, and
inferior MI. However, we observed zero values for both the
F1-score and sensitivity in the cases of lateral and anterior
MI. We attribute this subpar performance for these classes
to their limited representation within the training dataset.
4. Discussion and Conclusions

This paper presents the outcomes of employing an
ensemble of machine-learning models for ECG-based
diagnosis classification. We explored two classifiers, one
with 10 classes and another with 5 classes. Our evaluation
revealed good accuracy and performance, as measured
by the F1-score and the sensitivity-to-specificity ratio,
for certain diagnoses. However, we observed suboptimal
outcomes for specific diagnoses, primarily stemming from
class imbalance issues.

Furthermore, our classifier utilizes a 12-lead ECG as
input, with only one QRS complex per lead, which may
impact the accuracy of ventricular premature contractions
(PVCs) classification. In forthcoming research, we aim
to enhance classification outcomes by addressing class
imbalances through the generation of synthetic samples.
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